Trigonometry

- 1. $\frac{2\sin x}{\cos x \sin x \tan x} = A. \tan 2x \quad B. \cot 2x \quad C. \tan x \quad D. \cot x \quad E. \sec x$ [2009F, A]
- 2. If $\sin\theta \cos\theta = 0.2$ and $\sin 2\theta = 0.96$, find $\sin^3\theta \cos^3\theta$. [2009S, 0.296]
- 3. In $\triangle ABC$, AB = 5, BC = 9, AC = 7. Find the value of $\frac{\tan \frac{A-B}{2}}{\tan \frac{A+B}{2}}$. [2008F, $\frac{1}{8}$]
- 4. In $\triangle ABC$, AB = AC and in $\triangle DEF$, DE = DF. If AB is twice DE and $\angle D$ is twice $\angle A$, then the ratio of the area of $\triangle ABC$ to the area of $\triangle DEF$ is: A. tan A B. 2sec A C. csc 2A D. sec A tan A E. cot 2A [2008F, B]
- 5. In hexagon PQRSTU, all interior angles =120°. If PQ = RS = TU = 50, and QR = ST = UP = 100, find the area of the triangle bounded by QT, RU, and PS to the nearest tenth. [2008F, 1082.5]
- 6. In $\triangle ABC$, AB = AC = 25, BC = 14. The perpendicular distances from a point *P* in the interior of $\triangle ABC$ to each of the three sides are equal. Find this distance. [2008S, $\frac{21}{4}$]
- 7. The graph of the function $f(x) = x + \sin kx$ ($|k| \le 1$) intersects the graph of the function $f^{-1}(x)$ at (4, a), (12, b), and (-8, c). Find the value of a + b + c. [2007S, 8]
- 8. If cos(arctar(x)) = x (x in radians), then x^2 can be expressed in the form $\frac{a + \sqrt{b}}{2}$. Find a+b. [2007S, 4]
- 9. The sum of the solutions of $\arctan \frac{1}{x} + \arctan \frac{1}{x+2} = \arctan \frac{4}{x+4}$ is
 - A. negative B. even C. 1 D. greater than 5 E. prime [2007S, E]
- 10. Let $s(x) = \sin(\pi x)$ and $S(x) = [s(x)]^2$. Find s(s(1/6)) + S(S(1/3)). [2006F, 3/2]
- 11. In pentagon AMTYC, AC = MT = 10, YT = CY = 20, $\angle A = \angle M = 135^{\circ}$, and $\angle Y = 150^{\circ}$. Find the area of the pentagon to the nearest square unit. [2006F, 323]
- 12. If $f(x) = \cos \pi x$ and g(x) = 2x, find f(g(1)) g(f(1)). [2006S, 3]
- 13. If *ABCD*, *DCEF*, *FEGH* are squares with *A*, *B*, *C*, *D*, *E*, *F*, *G* and *H* all disjoint points, find $m\angle GAH + m\angle GDH + m\angle GFH$ to the nearest tenth of a degree. [2006S, 90°]
- 14. In convex pentagon AMTYC, $\overline{CY} \perp \overline{YT}$, $\overline{MT} \perp \overline{YT}$, CY = YT = 63, MT = 79, AM = 39, and AC = 52. Find the area of the pentagon. [2006S, 5487]
- 15. If α is the acute angle formed by the lines with equations y = 2x 5 and y = 1 3x, find $\tan \alpha$. [2006S, 1]
- 16. In the quadrilateral *PQRS*, PQ=1, $QR=RS=\sqrt{2}$, $PS=\sqrt{3}$, and QS=2. If *T* is the point of intersection of the diagonals, find the measure in degrees of angle *RTS*. [2006S, 75]

Laney College -- For AMATYC SML Math Competition Coaching Sessions v. 1.0, [2/7/2010]

- 17. ΔSML has sides of length 6, 7, 8. Find the exact value of $(\cos S + \cos M + \cos L)$. [2005F, $\frac{47}{32}$]
- 18. Find the sum of all solutions of $\cos x = \cot x \cos x$ for which $0 \le x \le 2\pi$. [2005F, 3.5π]
- 19. A triangle has vertices A(0,0), B(3,0), and C(3,4). If the triangle is rotated counterclockwise around the origin until *C* lies on the positive *y*-axis, find the area of the intersection of the region bounded by the original triangle and the region bounded by the rotated triangle. [2005F, $\frac{21}{16}$]

20. If
$$0 < t < \pi/2$$
, $0 < z < 1$, and $\cos t = \frac{1 - z^2}{1 + z^2}$, how many of the following are true?
 $z = \sqrt{\frac{1 - \cos t}{1 + \cos t}}$; $\sin t = \frac{2z}{1 + z^2}$; $\tan t = \frac{2z}{1 - z^2}$; $z = \tan \frac{t}{2}$ [2005F, 4]