Trigonometry – Solutions

 $\frac{2 \sin x}{\cos x - \sin x \tan x} = \mathbf{A}. \ \tan 2x \quad \mathbf{B}. \ \cot 2x \quad \mathbf{C}. \ \tan x \quad \mathbf{D}. \ \cot x \quad \mathbf{E}. \ \sec x$ 1. [2009F, A] $\frac{2\sin x}{\cos x - \sin x \tan x} = \frac{2\sin x}{\cos x - \sin x \sin x / \cos x} = \frac{2\sin x \cos x}{\cos^2 x - \sin^2 x} = \frac{\sin 2x}{\cos 2x} = \tan 2x$ Sol: _ 2. If $\sin\theta - \cos\theta = 0.2$ and $\sin 2\theta = 0.96$, find $\sin^3\theta - \cos^3\theta$. [2009S, 0.296] **Sol:** $\sin^3 \theta - \cos^3 \theta = (\sin \theta - \cos \theta)(\sin^2 \theta + \sin \theta \cos \theta + \cos^2 \theta)$ $= (\sin\theta - \cos\theta)(1 + \sin\theta\cos\theta) = (0.2)(1 + \frac{1}{2}\sin 2\theta) = (0.2)(1 + 0.96/2) = 0.296$ 3. In $\triangle ABC$, AB = 5, BC = 9, AC = 7. Find the value of $\frac{\tan \frac{A-B}{2}}{\tan \frac{A+B}{2}}$. [2008F, $\frac{1}{8}$] Sol: $\frac{\tan\frac{A-B}{2}}{\tan\frac{A+B}{2}} = \frac{\cos\frac{A+B}{2}\sin\frac{A-B}{2}}{\sin\frac{A+B}{2}\cos\frac{A-B}{2}} = \frac{\frac{1}{2}(\sin A - \sin B)}{\frac{1}{2}(\sin A - \sin B)} = \frac{\sin A - \sin B}{\sin A + \sin B} = \frac{a-b}{a+b} = \frac{9-7}{9+7} = \frac{1}{8}.$ The second equality appeals to the product-to-sum formulas $\sin u \cos v = \frac{1}{2} [\sin(u+v) + \sin(u-v)]$, and $\cos u \sin v = \frac{1}{2} [\sin(u+v) - \sin(u-v)]$. The fourth equality is based on the Law of Sines, $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$, which, simply put, says that the proportion $\sin A : \sin B : \sin C$ is the same as a:b:c. 4. In $\triangle ABC$, AB = AC and in $\triangle DEF$, DE = DF. If AB is twice DE and $\angle D$ is twice $\angle A$, then the ratio of the area of $\triangle ABC$ to the area of $\triangle DEF$ is: **B.** $2 \sec A$ **C.** $\csc 2A$ **D.** $\sec A \tan A$ **E.** cot2*A* **[2008F, B]** A. tan ASol: The area of $\triangle DEF$ is $\frac{1}{2}(\overline{DE})^2 \sin D = \frac{1}{2}(\frac{1}{2} \cdot \overline{AB})^2 \sin(2A) = \frac{1}{8}(\overline{AB})^2 2\sin A \cos A$ $=\frac{1}{2}\cos A[\frac{1}{2}(\overline{AB})^2\sin A]$, which is $\frac{1}{2}\cos A$ times the area of ΔABC . Thus the area of ΔABC is $1/(\frac{1}{2}\cos A) = 2\sec A$ times the area of ΔDEF . 5. In hexagon *PORSTU*, all interior angles $=120^{\circ}$. If PO = RS = TU = 50, and QR = ST = UP = 100, find the area of the triangle bounded by QT, RU, Cand PS to the nearest tenth. [2008F, 1082.5] Sol: The accompanying picture illustrates the situation at hand. All angles are either 60° or 120°. RU = CR = CQ + QR = 50 + 100 = 150. But Χ RY = RS = 50, and likewise ZU = 50, so YZ = 50. The area of the equilateral triangle ΔXYZ is thus U $\frac{1}{2}(50)^2 \sin(60^\circ) = \frac{1}{2}(50)^2 \frac{\sqrt{3}}{2} = 625\sqrt{3} \approx 10825$. 6. In $\triangle ABC$, AB = AC = 25, BC = 14. The perpendicular S A T B distances from a point P in the interior of $\triangle ABC$ to each of the three sides are equal. Find this distance. [2008S, $\frac{21}{4}$] Y Ζ **Sol:** *P* is the center of the inscribed circle of $\triangle ABC$ and we want its radius r. The area of $\triangle ABC$ is the sum of the areas of $\triangle ABP$, $\triangle BCP$, $\triangle CAP$, i.e.

 $\frac{1}{2}\overline{AB}\cdot r + \frac{1}{2}\overline{BC}\cdot r + \frac{1}{2}\overline{CA}\cdot r = \frac{1}{2}(25+25+14)r = 32r$. On the other hand, Heron's

Formula $\sqrt{s(s-a)(s-b)(s-c)}$, with $s = \frac{1}{2}(a+b+c) = \frac{1}{2}(25+25+14) = 32$, gives the area as $\sqrt{32(32-25)(32-25)(32-14)} = 168$. So 32r = 168, $r = \frac{21}{4}$.

7. The graph of the function $f(x) = x + \sin kx$ ($|k| \le 1$) intersects the graph of the function $f^{-1}(x)$ at (4, a), (12, b), and (-8, c). Find the value of a+b+c. [2007S, 8]

Sol: We claim that the graph of this *f* and that of its inverse f^{-1} can only meet at points on the line y = x. Thus a = 4, b = 12, c = -8. The answer follows. To prove the claim, let (x, y) be on both the graphs of *f* and f^{-1} . Then $y = x + \sin kx$, and $x = y + \sin ky$. Take the difference between the two equation and rewrite it to $-2(x - y) = \sin kx - \sin ky$, so $|2(x - y)| = |\sin kx - \sin ky| \le |kx - ky|$ $= |k||x - y| \le |x - y|$, thus $2|x - y| \le |x - y|$, and so x = y.

8. If $\cos(\arctan(x)) = x$ (x in radians), then x^2 can be expressed in the form $\frac{a+\sqrt{b}}{2}$. Find a+b. [2007S, 4] Sol: $x^2 = \cos^2(\arctan x) = \frac{1}{\sec^2(\arctan x)} = \frac{1}{1+\tan^2(\arctan x)} = \frac{1}{1+x^2}$, thus $x^2(x^2+1) = 1$,

i.e.
$$(x^2)^2 + x^2 - 1 = 0$$
. The quadratic formula gives $x^2 = \frac{-1 + \sqrt{5}}{2}$.

9. The sum of the solutions of $\arctan \frac{1}{x} + \arctan \frac{1}{x+2} = \arctan \frac{4}{x+4}$ is

A. negative B. even C. 1 D. greater than 5 E. prime [2007S, E] Sol: Denote $\alpha = \arctan \frac{1}{x}$, $\beta = \arctan \frac{1}{x+2}$, then $\tan \alpha = \frac{1}{x}$, $\tan \beta = \frac{1}{x+2}$, therefore $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{1/x + 1/(x+2)}{1 - (1/x)(1/(x+2))} = \frac{2x+2}{x^2 + 2x - 1}$. It follows that $\frac{2x+2}{x^2 + 2x - 1} = \frac{4}{x+4}$, which implies $4(x^2 + 2x - 1) = (2x+2)(x+4)$, i.e. $x^2 - x - 6 = 0$. Solve to get x = 3, -2. But -2 doesn't work. So x = 3. Thus the answer.

- **10.** Let $s(x) = \sin(\pi x)$ and $S(x) = [s(x)]^2$. Find s(s(1/6)) + S(S(1/3)). [2006F, 3/2] Sol: Straightforward.
- 11. In pentagon AMTYC, AC = MT = 10, YT = CY = 20, $\angle A = \angle M = 135^{\circ}$, and $\angle Y = 150^{\circ}$. Find the area of the pentagon to the nearest square unit. [2006F, 323] Sol: The pentagon is symmetric. Thus $\angle YTM$ and $\angle YCA$ both equals $\frac{1}{2}(3.180^{\circ} - 2.135^{\circ} - 150^{\circ}) = 60^{\circ}$. With MT = 10 and YT = 20, this makes $\triangle YTM$ a $30^{\circ} - 60^{\circ} - 90^{\circ}$ special triangle, with $MY = 10\sqrt{3}$, and an area of

 $\frac{1}{2}(10)(10\sqrt{3}) = 50\sqrt{3}$. Likewise ΔYCA has an area of $50\sqrt{3}$. Since $\angle YMT = 90^{\circ}$

and $\angle AMT = 135^\circ$, it follows that $\angle AMY = 45^\circ$. Likewise $\angle MAY = 45^\circ$, so

 ΔAMY is a 45°- 45°-90° right triangle. As $MY = 10\sqrt{3}$, the area of ΔAMY is $\frac{1}{2}(10\sqrt{3})(10\sqrt{3}) = 150$. The area of the pentagon is thus $50\sqrt{3} + 50\sqrt{3} + 150 \approx 323$.

- **12.** If $f(x) = \cos \pi x$ and g(x) = 2x, find f(g(1)) g(f(1)). [2006S, 3] Sol: Straightforward.
- 13. If ABCD, DCEF, FEGH are squares with A, B, C, D, E, F, G and H all disjoint points, find m∠GAH+m∠GDH+m∠GFH to the nearest tenth of a degree. [2006S, 90°]

Sol: Denote the three angles being summed by α , β , γ , then $\tan \alpha = \frac{1}{3}$, $\tan \beta = \frac{1}{2}$,

and $\tan \gamma = 1$, i.e. $\gamma = 45^{\circ}$. Thus $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{\frac{1}{3} + \frac{1}{2}}{1 - \frac{1}{3} \cdot \frac{1}{2}} = 1$, therefore

$$\alpha + \beta = 45^\circ$$
, and so $\alpha + \beta + \gamma = 90^\circ$.

- 14. In convex pentagon AMTYC, $\overline{CY} \perp \overline{YT}$, $\overline{MT} \perp \overline{YT}$, CY = YT = 63, MT = 79, AM = 39, and AC = 52. Find the area of the pentagon. [2006S, 5487] Sol: Draw a line segment from C perpendicular to \overline{MT} , reaching \overline{MT} at D, then ΔCDM is a right triangle. DM = 79 - 63 = 16, CD = 63. Use the Pythagorean Theorem to get CM = 65. Then AM : AC : CM = 39 : 52 : 65 = 3 : 4 : 5, thus $\angle MAC = 90^\circ$, with the area of $\Delta MAC = (AM)(AC)/2 = (39)(52)(2) = 1014$. The trapezoid *CYTM* has an area of $\frac{1}{2}(63 + 79)(63) = 4473$. We get 1014 + 4473 = 5487.
- 15. If α is the acute angle formed by the lines with equations y = 2x 5 and y = 1 3x, find $\tan \alpha$. [2006S, 1]

Sol: The two lines have slopes 2 and -3, respectively. So they make acute angles β and γ , respectively, with the positive x-axis, such that $\tan \beta = 2$, $\tan \gamma = 3$. Thus

$$\tan(\beta + \gamma) = \frac{\tan\beta + \tan\gamma}{1 - \tan\beta \tan\gamma} = \frac{2+3}{1 - 2\cdot 3} = -1. \text{ So } \beta + \gamma = 135^{\circ}, \text{ thus } \alpha = 45^{\circ}.$$

16. In the quadrilateral *PQRS*, *PQ*=1, *QR*=*RS*= $\sqrt{2}$, *PS*= $\sqrt{3}$, and *QS*=2. If *T* is the point of intersection of the diagonals, find the measure in degrees of angle *RTS*. [2006S, 75]

Sol: $\triangle SQP$ is a 30° - 60° - 90° special right triangle, and $\triangle SQR$ is a 45° - 45° - 90° special right triangle. It follows that P, Q, R, S fall on a circle, with \overline{QS} being a diameter. The inscribed angle $\angle PRQ$ equals in measure the inscribed angle $\angle PSQ = 30^\circ$. Thus $\angle RTS = \angle RQT + \angle TRQ = 45^\circ + 30^\circ = 75^\circ$.

17. $\triangle SML$ has sides of length 6, 7, 8. Find the exact value of $(\cos S + \cos M + \cos L)$. [2005F, $\frac{47}{32}$]

Sol: Use Cosine Law, $s^2 = m^2 + \ell^2 - 2m\ell\cos S$ to get $\cos S = \frac{m^2 + \ell^2 - s^2}{2m\ell}$

 $=\frac{7^2+8^2-6^2}{2\cdot7\cdot8}$. Likewise compute $\cos M$ and $\cos L$ before summing the three.

18. Find the sum of all solutions of $\cos x = \cot x \cos x$ for which $0 \le x \le 2\pi$. [2005F, 3.5π]

Sol: $\cos x = 0$ or $\cot x = 1$. Thus $x = \frac{1}{2}\pi$, $\frac{3}{2}\pi$, $\frac{1}{4}\pi$, $\frac{5}{4}\pi$. The answer follows.

19. A triangle has vertices A(0,0), B(3,0), and C(3,4). If the triangle is rotated counterclockwise around the origin until C lies on the positive y-axis, find the area of the intersection of the region bounded by the original triangle and the region bounded by the rotated triangle. [2005F, $\frac{21}{16}$]

Sol: Let A', B', C' be the points that A, B, C go after the rotation. In particular, A' = A and C' is at (0,5). \overline{AC} is on the line $y = \frac{4}{3}x$, while $\overline{C'B'}$ is on the line $y = -\frac{4}{3}x + 5$. Thus \overline{AC} and $\overline{C'B'}$ meets at a point D whose x-coordinate satisfies $\frac{4}{3}x = -\frac{4}{3}x + 5$, i.e. $\frac{15}{8}$. The union of right triangular regions $\triangle ABC$ and $\triangle A'B'C'$ is the same as the union of abutting regions $\triangle ABC$ and $\triangle ADC'$, and thus carries an area of $\frac{1}{2}(3)(4) + \frac{1}{2}(5)(\frac{15}{8}) = \frac{171}{16}$, which should equal the sum of the area of $\triangle ABC$ plus that of $\triangle A'B'C'$ minus the overlap area. Thus the overlap area is $\frac{1}{2}(3)(4) + \frac{1}{2}(3)(4) - \frac{171}{16} = \frac{21}{16}$.

20. If
$$0 < t < \pi/2$$
, $0 < z < 1$, and $\cos t = \frac{1 - z^2}{1 + z^2}$, how many of the following are true?
 $z = \sqrt{\frac{1 - \cos t}{1 + \cos t}}$; $\sin t = \frac{2z}{1 + z^2}$; $\tan t = \frac{2z}{1 - z^2}$; $z = \tan \frac{t}{2}$ [2005F, 4]

Sol: This has to do with a well-known change of variable in calculus, attributed to Karl Weierstrass. One way to manage the situation is to draw a right triangle with one angle being t, the opposite side being $1-z^2$, and the hypotenuse being $1+z^2$. The adjacent side can be computed using the Pythagorean Theorem:

 $\sqrt{(1+z^2)^2-(1-z^2)^2} = \sqrt{4z^2} = 2z$, then the second and the third formula follow.

The first comes from solving $\cos t = \frac{1-z^2}{1+z^2}$ for z^2 and then taking square root. The fourth comes from the first by a half-angle formula for tan.